Utility of machine learning of apparent diffusion coefficient (ADC) and T2-weighted (T2W) radiomic features in PI-RADS version 2.1 category 3 lesions to predict prostate cancer diagnosis.

2021 
Purpose To evaluate if machine learning (ML) of radiomic features extracted from apparent diffusion coefficient (ADC) and T2-weighted (T2W) MRI can predict prostate cancer (PCa) diagnosis in Prostate Imaging-Reporting and Data System (PI-RADS) version 2.1 category 3 lesions. Methods This multi-institutional review board-approved retrospective case-control study evaluated 158 men with 160 PI-RADS category 3 lesions (79 peripheral zone, 81 transition zone) diagnosed at 3-Tesla MRI with histopathology diagnosis by MRI-TRUS-guided targeted biopsy. A blinded radiologist confirmed PI-RADS v2.1 score and segmented lesions on axial T2W and ADC images using 3D Slicer, extracting radiomic features with an open-source software (Pyradiomics). Diagnostic accuracy for (1) any PCa and (2) clinically significant (CS; International Society of Urogenital Pathology Grade Group ≥ 2) PCa was assessed using XGBoost with tenfold cross -validation. Results From 160 PI-RADS 3 lesions, there were 50.0% (80/160) PCa, including 36.3% (29/80) CS-PCa (63.8% [51/80] ISUP 1, 23.8% [19/80] ISUP 2, 8.8% [7/80] ISUP 3, 3.8% [3/80] ISUP 4). The remaining 50.0% (80/160) lesions were benign. ML of all radiomic features from T2W and ADC achieved area under receiver operating characteristic curve (AUC) for diagnosis of (1) CS-PCa 0.547 (95% Confidence Intervals 0.510-0.584) for T2W and 0.684 (CI 0.652-0.715) for ADC and (2) any PCa 0.608 (CI 0.579-0.636) for T2W and 0.642 (CI 0.614-0.0.670) for ADC. Conclusion Our results indicate ML of radiomic features extracted from T2W and ADC achieved at best moderate accuracy for determining which PI-RADS category 3 lesions represent PCa.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    0
    Citations
    NaN
    KQI
    []