Numerical Black Hole Solutions in Modified Gravity Theories: Axial Symmetry Case.

2020 
We extend a recently developed numerical code to obtain stationary, axisymmetric solutions that describe rotating black hole spacetimes in a wide class of modified theories of gravity. The code utilizes a relaxed Newton-Raphson method to solve the full nonlinear modified Einstein's Equations on a two-dimensional grid with a Newton polynomial finite difference scheme. We validate this code by considering static and axisymmetric black holes in General Relativity. We obtain rotating black hole solutions in scalar-Gauss-Bonnet gravity with a linear (linear scalar-Gauss-Bonnet) and an exponential (Einstein-dilaton-Gauss-Bonnet) coupling and compare them to analytical and numerical perturbative solutions. From these numerical solutions, we construct a fitted analytical model and study observable properties calculated from the numerical results.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    6
    Citations
    NaN
    KQI
    []