Photonic crystal properties of self-assembled Archimedean tilings

2017 
Inspired by self-assembly of binary colloidal mixtures, we simulate the photonic properties of Archimedean tilings composed of triangular and square cross-section rods. Large isotropic photonic bandgaps up to 29.6% (TE) and 29.3% (TM) are found for the 32·4·3·4 Archimedean tiling due to its high rotational symmetry. For each particle geometry, the relative dielectric contrasts were varied independently over the range e = 2 to 16, consistent with the assembly of binary materials. Mode field distributions indicate that the bandgaps originate from Lorenz-Mie scattering for high dielectric particles in an air matrix (i.e., direct structures). For the inverted structures, bandgaps arise due to the redistribution of the mode field into air pores or into complementary regions of the high dielectric material. Equifrequency contour analysis and finite difference time domain simulations are performed for direct structures with high e square rods and low e triangular rods and vice versa. Negative refraction occurs a...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    5
    Citations
    NaN
    KQI
    []