THERMOCHEMICAL STABILITY OF SILICON-OXYGEN-CARBON ALLOY THIN FILMS : A MODEL SYSTEM FOR CHEMICAL AND STRUCTURAL RELAXATION AT SIC-SIO2 INTERFACES

1999 
Alloy thin films of hydrogenated silicon–oxygen–carbon (Si,C)Ox x<2, were deposited and analyzed in terms of changes in structure and bonding as a function of rapid thermal annealing between 600 and 1100 °C using a combination of Fourier transform infrared spectroscopy, Raman scattering and high-resolution transmission electron microscopy. Results showed that three structural/chemical transformations took place upon annealing. The initial reaction (600–800 °C) involved the loss of hydrogen bonded to both silicon and carbon. At intermediate temperatures (900–1000 °C) a Si–O–C type bond was observed to form, and subsequently disappear after annealing to 1050 °C. The formation of ordered amorphous-SiC regions, nanocrystalline-Si regions, and stoichiometric, thermally relaxed SiO2 accompanied the disappearance of the Si–O–C bond at the 1050 °C annealing temperature. Using this alloy as a model system, important information is obtained for optimized processing of SiC–SiO2 interfaces for device applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    29
    Citations
    NaN
    KQI
    []