Quantum cascade laser-based sensors for the detection of exhaled carbon monoxide

2016 
Carbon monoxide (CO) is an important biomarker as it originates in the human body from the heme (component of hemoglobin) degradation. Tunable laser absorption spectroscopy in the mid-infrared wavelength region is used for sensitive trace gas sensing of exhaled carbon monoxide (CO). Based on a quantum cascade laser emitting at 4.61 µm, two different spectroscopic methods are investigated: off-axis integrated cavity output spectroscopy (OA-ICOS) and wavelength modulation 2f/1f spectroscopy (WMS). The optical sensors integrate a slow feedback system to correct for wavelength drifts improving their stability over days. Both approaches demonstrate a high reproducibility and sensitivity during online measurements of exhaled human breath. Considering the detection limit to be the equal to the standard deviation of the background fluctuations, the noise-equivalent detection limit for both OA-ICOS and WMS is 7 ppbv (1-s averaging time), leading to a noise-equivalent absorption sensitivity of 3.1 × 10−7 cm−1 Hz−1/2, which is sufficient for measurements of exhaled CO (eCO). Collection and measurements of eCO samples were investigated, and different exhalation flow rates and breath-holding time were explored, to provide a reliable sampling method for future medical investigations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    25
    Citations
    NaN
    KQI
    []