Testing phase-shifting algorithms for uncertainty evaluation in interferometric gauge block calibration

2009 
This paper describes the uncertainty contribution of nine different phase-shifting algorithms (PSAs) to a gauge block calibration evaluated using a Monte Carlo method. The phase map and its standard deviation, codified in the output distribution obtained with each PSA, are used as input parameters in the exact fractions method for the final calculation of the gauge block length. Results obtained show the behaviour of each PSA versus different types of error sources. Uncertainty evaluation fits well to a Gaussian distribution for all algorithms tested with more than 104 trials and the central limit theorem is satisfied. As expected, the Symmetric 5 + 1 PSA shows the best behaviour with the lower uncertainty contribution and appears among PSAs used as the best algorithm for this technical application. As the selected PSAs are representative for the main PSA families, the protocol employed can be used for any other specifically tailored algorithm.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    7
    Citations
    NaN
    KQI
    []