Quantifying fossil fuel methane emissions using observations of atmospheric ethane and an uncertain emission ratio

2021 
Abstract. We present a method for estimating fossil fuel methane emissions using observations of methane and ethane, accounting for uncertainty in their emission ratio. The ethane:methane emission ratio is incorporated as a variable parameter in a Bayesian model, with its own prior distribution and uncertainty. We find that using an emission ratio distribution mitigates bias from using a fixed, potentially incorrect emission ratio and that uncertainty in this ratio is propagated into posterior estimates of emissions. A synthetic data test is used to show the impact of assuming an incorrect ethane:methane emission ratio and demonstrate how our variable parameter model can better quantify overall uncertainty. We also use this method to estimate UK methane emissions from high-frequency observations of methane and ethane from the UK Deriving Emissions linked to Climate Change (DECC) network. Using the joint methane-ethane inverse model, we estimate annual mean UK methane emissions of approximately 0.27 (95 % uncertainty interval 0.26–0.29) Tg per year from fossil fuel sources and 2.06 (1.99–2.15) Tg per year from non-fossil fuel sources, during the period 2015–2019. Uncertainties in UK fossil fuel emissions estimates are reduced on average by 15 %, and up to 35 %, when incorporating ethane into the inverse model, in comparison to results from the methane-only inversion.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    0
    Citations
    NaN
    KQI
    []