Phase evolution and relaxor to ferroelectric phase transition boosting ultrahigh electrostrains in (1−x)(Bi1/2Na1/2)TiO3-x(Bi1/2K1/2)TiO3 solid solutions

2021 
ABSTRACT Owing to the complex composition architecture of these solid solutions, some fundamental issues of the classical (1−x)Bi1/2Na1/2TiO-xBi1/2K1/2TiO3 (BNT-xBKT) binary system, such as details of phase evolution and optimal Na/K ratio associated with the highest strain responses, remain unresolved. In this work, we systematically investigated the phase evolution of the BNT-xBKT binary solid solution with x ranging from 0.12 to 0.24 using not only routine X-ray diffraction and weak-signal dielectric characterization, but also temperature-dependent polarization versus electric field (P-E) and current versus electric field (I-E) curves. Our results indicate an optimal Na/K ratio of 81/19 based on high-field polarization and electrostrain characterizations. As the temperature increased above 100 °C, the x=0.19 composition produces ultrahigh electrostrains (>0.5%) with high thermal stability. The ultrahigh and stable electrostrains were primarily due to the combined effect of electric-field-induced relaxor-to-ferroelectric phase transition and ferroelectric-to-relaxor diffuse phase transition during heating. More specifically, we revealed the relationship between phase evolution and electrostrain responses based on the characteristic temperatures determined by both weak-field dielectric and high-field ferroelectric/electromechanical property characterizations. This work not only clarifies the phase evolution in BNT-xBKT binary solid solution, but also paves the way for future strain enhancement through doping strategies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    75
    References
    1
    Citations
    NaN
    KQI
    []