Female genetic contributions to sperm competition in Drosophila melanogaster

2018 
In many species, sperm can remain viable in the reproductive tract of a female well beyond the typical interval to remating. This creates an opportunity for sperm from different males to compete for oocyte fertilization inside the female’s reproductive tract. In Drosophila melanogaster , sperm morphology and seminal fluid content affect male success in sperm competition. On the other hand, although genome-wide association studies (GWAS) have demonstrated that female genotype plays a role in sperm competition outcome as well, the biochemical, sensory and physiological processes by which females detect and selectively use sperm from different males remain elusive. Here, we functionally tested 27 candidate genes implicated via a GWAS for their contribution to the female’s role in sperm competition, measured as changes in the relative success of the first male to mate (P1). Of these 27 candidates, we identified eight genes that affect P1 when knocked down in females, and also showed that six of them do so when knocked down in the female nervous system. Two genes in particular, Rim and caup , lowered P1 when knocked down in sensory pickpocket ( ppk ) + neurons and octopaminergic Tdc2 + neurons, respectively. These results establish a functional role for the female’s nervous system in the process of sperm competition and expand our understanding of the genetic, neuronal and mechanistic basis of female responses to multiple matings. We propose that through their nervous system, females actively assess male compatibility based on courtship or ejaculates and modulate sperm competition outcome accordingly.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    73
    References
    0
    Citations
    NaN
    KQI
    []