Enhancement of Cement-Based Solidification/Stabilization of a Lead-Contaminated Smectite Clay

2020 
ABSTRACT The cement-based solidification/stabilization is commonly used to remediate heavy-metal-contaminated clayey soils. The major problem associated with this method is heavy-metal precipitation, which retards cement hydration. The objectives of this paper are to study the influence of pH-dependent lead solubility patterns on the solidification/stabilization of contaminated smectite and to overcome the problems associated with cement hydration in this process through NaOH treatment. A series of physicochemical experiments were performed on untreated and NaOH-enhanced samples. Contaminated smectite with 5 to 100 cmol/kg-soil of lead nitrate was solidified/stabilized by 10–50% cement. This research demonstrates that solidification/stabilization is a pH-dependent phenomenon. Enhancement increases the pH of contaminated soil in which lead components transfer to a soluble form. Hereafter, as the results of XRD reveal, a decrease in lead precipitation on cement components is observed. Consequently, a noticeable increase in CSH formation is detected. The capsulation of lead ions by CSH improves the setting-time and unconfined compressive strength of solidified/stabilized samples. Furthermore, the TCLP results show a significant reduction in samples’ lead-leaching abilities. Therefore, enhancement has changed the governing retention phenomena from precipitation/stabilization in lead carbonate form to mainly capsulation/solidification by CSH. Moreover, the results show a noticeable reduction in the required cement content.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    67
    References
    9
    Citations
    NaN
    KQI
    []