Giant axonal neuropathy: The first Iranian case with a variation in the gigaxonin gene and a glance to the other cases

2021 
Background: Giant axonal neuropathy (GAN) is a very rare fatal neurodegenerative disorder with clinical and allelic heterogeneity. The disease is caused by mutations in the GAN (gigaxonin) gene. Herein, we reported the clinical presentations and results of genetic analysis of the first Iranian GAN case. Methods: Phenotypic data were obtained by neurologic examination, brain magnetic resonance imaging (MRI), electromyography (EMG), electroencephalography (EEG), and sonography from the proband. Deoxyribonucleic acid (DNA) was isolated from peripheral blood leucocytes and whole exome sequencing (WES) was performed. The candidate variant was screened by Sanger sequencing in the proband and her family members. Results: The proband was a 7-year-old girl who was admitted with a chief complaint of ataxia, muscle weakness, delayed developmental milestones, and history of psychiatric disorders. She was very moody and had clumsy gait, decreased deep tendon reflexes (DTRs) of lower limbs, and kinky hair. The brain MRI revealed white matter abnormality. The EMG revealed that her disease was compatible with the chronic axonal type of sensorimotor polyneuropathy; however, her EEG was normal. Results of the WES revealed a homozygous variant; c.G778T:p.E260* in the GAN gene, indicating the GAN disorder. Conclusion: The present study affirmed GAN allelic heterogeneity and resulted in the expansion of the phenotypic spectrum of GAN pathogenic variants. Identification of more families with mutations in GAN gene helps to further understand the molecular basis of the disease and provides an opportunity for genetic counseling especially in the populations with a high degree of consanguineous marriage such as the Iranian population.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []