MiR-203 inhibits the proliferation, invasion, and migration of pancreatic cancer cells by down-regulating fibroblast growth factor 2

2020 
Background: Aberrant fibroblast growth factor 2 (FGF2) expression is a major cause of poor prognosis in pancreatic cancer. MiR-203 is a newly discovered microRNA (miRNA) that can affect the biological behavior of tumors. This study investigated whether miR-203 can regulate FGF2 expression and its role in pancreatic cancer cell proliferation, apoptosis, invasion, and migration. Methods: MiR-203 expression in different cell lines was examined by qRT-PCR, followed by the establishment of knockdown and overexpression cell models. We used the CCK-8 assay to examine cell proliferation and the annexin V-APC/7-AAD double-staining method to detect apoptosis. In addition, we used wound healing and transwell assays to investigate the effects of miR-203 on the migration and invasion of pancreatic cancer cells. The effects of miR-203 knockdown and overexpression on FGF2 mRNA expression were detected by qRT-PCR. We also overexpressed FGF2 and examined the effects of FGF2 overexpression on the proliferation, apoptosis, invasion, and migration of pancreatic cancer cells. The binding of miR-203 to FGF2 was assessed by a luciferase reporter assay. Results: We found that the miR-203 expression level was significantly down-regulated in pancreatic cancer cells compared to normal pancreatic cells. Functionally, the knockdown of miR-203 inhibited cell proliferation and increased apoptosis. Equally important, miR-203 reduced the migration and invasion of pancreatic cancer cells. In addition, we found that miR-203 overexpression inhibited FGF2 expression in pancreatic cancer cells by qRT-PCR. FGF2 overexpression significantly affected the proliferation, invasion, and metastasis of pancreatic cancer cells. Mechanistically, miR-203 base-paired with the FGF2 mRNA, resulting in the knockdown of the FGF2 mRNA and the down-regulation of the FGF2 protein. Conclusions: MiR-203 inhibits FGF2 expression, regulates the proliferation of pancreatic cancer cells, and inhibits the invasion and metastasis of pancreatic cancer cells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    0
    Citations
    NaN
    KQI
    []