Self-anti-angiogenesis nanoparticles enhance anti-metastatic-tumor efficacy of chemotherapeutics

2021 
Abstract Beyond traditional endothelium-dependent vessel (EDV), vascular mimicry (VM) is another critical tumor angiogenesis that further forms in many malignant metastatic tumors. However, the existing anti-angiogenesis combined chemotherapeutics strategies are only efficient for the treatment of EDV-based subcutaneous tumors, but remain a great challenge for the treatment of in situ malignant metastatic tumor associated with EDV and VM. Here, we demonstrate a self-assembled nanoparticle (VE-DDP-Pro) featuring self-anti-EDV and -VM capacity enables to significantly enhance the treatment efficacy of cisplatin (DDP) against the growth and metastasis of ovarian cancer. The VE-DDP-Pro is constructed by patching DDP loaded cRGD-folate-heparin nanoparticles (VE) onto the surface of protamine (Pro) nanoparticle. We demonstrated the self-anti-angiogenesis capacity of VE-DDP-Pro was attributed to VE, which could significantly inhibit the formation of EDV and VM by regulating signaling pathway of MMP-2/VEGF, AKT/mTOR/MMP-2/Laminin and AKT/mTOR/EMT, facilitating chemotherapeutics to effectively suppress the development and metastasis of ovarian cancer. Thus, combing with the chemotherapeutics effectiveness of DDP, the VE-DDP-Pro can significantly enhance treatment efficacy and prolong median survival of mice with metastatic ovarian cancer. We believe our self-assembled nanoparticles integrating the anti-EDV and anti-VM capacity provide a new preclinical sight to enhance the efficacy of chemotherapeutics for the treatment malignant metastasis tumor.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    0
    Citations
    NaN
    KQI
    []