Exsolution of Fe and SrO Nanorods and Nanoparticles from Lanthanum Strontium Ferrite La0.6Sr0.4FeO3−δ Materials by Hydrogen Reduction

2015 
Formation of uniform Fe and SrO rods as well as nanoparticles following controlled reduction of La0.6Sr0.4FeO3−δ (LSF) and Ni-LSF samples in dry and moist hydrogen is studied by aberration-corrected electron microscopy. Metallic Fe and SrO precipitate from the perovskite lattice as rods of several tenths of nm and thicknesses up to 20 nm. Based on a model of Fe whisker growth following reduction of pure iron oxides, Fe rod exsolution from LSF proceeds via rate-limiting lattice oxygen removal. This favors the formation of single iron metal nuclei at the perovskite surface, subsequently growing as isolated rods. The latter is only possible upon efficient removal of reduction-induced water and, subsequently, reduction of Fe +III/+IV to Fe(0). If water remains in the system, no reduction or rod formation occurs. In contrast, formation of SrO rods following reduction in dry hydrogen is a catalytic process aided by Ni particles. It bears significant resemblance to surface diffusion-controlled carbon whisker gro...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    33
    Citations
    NaN
    KQI
    []