Serum adipocyte fatty acid‐binding protein levels are associated with peripheral arterial disease in women, but not men, with type 2 diabetes mellitus

2018 
Background Adipocyte fatty acid-binding protein (A-FABP) has been recognized as an important player in macrophage cholesterol trafficking and inflammation, and may promote the development of atherosclerosis. To further elucidate the role of A-FABP in atherosclerosis in diabetes, we investigated the relationship between serum A-FABP concentrations and peripheral arterial disease (PAD) in patients with type 2 diabetes mellitus (T2DM). Methods In all, 488 inpatients with T2DM were enrolled in the study (254 men, 234 women; mean (±SD) age 57.3 ± 13.0 years). The severity of peripheral arterial stenosis was assessed by ultrasound examination. Serum A-FABP concentrations were determined by ELISA. Results Serum A-FABP concentrations were significantly higher in patients with than without PAD (8.0 ± 3.3 vs 6.2 ± 1.6 ng/mL, respectively; P < 0.05). Interestingly, there was an obvious gender-related difference in PAD patients with T2DM, with the stenosis rate being higher for female than male T2DM patients in the third A-FABP tertile. Logistic regression analysis revealed that serum A-FABP concentrations were an independent risk factor for PAD in female T2DM patients (odds ratio 1.890, 95% confidence interval 1.041–3.432; P = 0.036), but not in male T2DM patients. Correlation analyses revealed that A-FABP concentrations were correlated with body mass index (BMI), diastolic blood pressure, urinary microalbumin, and serum creatinine in male patients, and with BMI, duration of T2DM, fasting blood glucose, and serum creatinine in female patients. Conclusions Serum A-FABP concentrations are closely associated with PAD in Chinese women with T2DM. The study findings suggest that A-FABP may be a more specific marker of PAD in diabetic women than men.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    2
    Citations
    NaN
    KQI
    []