Biodegradation kinetics of dibenzoate plasticizers and their metabolites

2013 
Abstract The kinetics of the biodegradation of two commercial plasticizers, diethylene glycol dibenzoate (D(EG)DB) and dipropylene glycol dibenzoate (D(PG)DB), as well as two alternative plasticizers, 1,3-propanediol dibenzoate and 2,2-methyl-propyl-1,3-propanediol dibenzoate, were investigated in an aerated bioreactor. The experiments were conducted with resting cells of Rhodococcus rhodochrous , which had been grown with hexadecane as the substrate. The first step in the biodegradation was always the hydrolysis of an ester bond, releasing the corresponding monobenzoate and benzoic acid. Biodegradation of plasticizers and their associated metabolites were modeled using a Monod-type kinetic model. Significant differences between the biodegradation of commercial and alternative plasticizers were observed both in the biodegradation pathway and the biodegradation rates of monobenzoate metabolites. At a selected concentration of 0.4 g/L, the monobenzoates released from the biodegradation of 1,3-propanediol dibenzoate and 2,2-methyl-propyl-1,3-propanediol dibenzoate were degraded approximately 13 and 4 times more quickly, respectively, than the monobenzoate released from the biodegradation of D(PG)DB. The rapid biodegradation of monobenzoates released from microbial hydrolysis of alternative dibenzoate plasticizers was attributed to the lack of an ether bond in these compounds.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    10
    Citations
    NaN
    KQI
    []