Vibrio cholerae hemolysin: The β-trefoil domain is required for folding to the native conformation

2016 
Abstract Vibrio cholerae cytolysin/hemolysin (VCC) is a 65 kDa β-pore-forming toxin causing lysis and death of eukaryotic cells. Apart from the core cytolysin domain, VCC has two lectin domains with β-trefoil and β-prism folds. The β-prism domain binds to cell surface carbohydrate receptors; the role of the β-trefoil domain is unknown. Here, we show that the pro-VCC mutant without the β-trefoil domain formed aggregates highly susceptible to proteolysis, suggesting lack of a properly folded compact structure. The VCC variants with Trp532Ala or Trp534Ala mutation in the β-trefoil domain formed hemolytically inactive, protease-resistant, ring-shaped SDS-labile oligomers with diameters of ~19 nm. The Trp mutation induced a dramatic change in the global conformation of VCC, as indicated by: (a) the change in surface polarity from hydrophobic to hydrophilic; (b) movement of core Trp residues to the protein-water interface; and (c) decrease in reactivity to the anti-VCC antibody by >100-fold. In fact, the mutant VCC had little similarity to the wild toxin. However, the association constant for the carbohydrate-dependent interaction mediated by the β-prism domain decreased marginally from ~3×10 8 to ~5×10 7  M −1 . We interpret the observations by proposing: (a) the β-trefoil domain is critical to the folding of the cytolysin domain to its active conformation; (b) the β-prism domain is an autonomous folding unit.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    2
    Citations
    NaN
    KQI
    []