Hydrogen sulfide attenuates lung ischemia–reperfusion injury through SIRT3-dependent regulation of mitochondrial function in type 2 diabetic rats

2019 
Abstract Background Lung ischemiareperfusion injury is a complex pathophysiologic process associated with high morbidity and mortality. We have demonstrated elsewhere that diabetes mellitus aggravated ischemia-induced lung injury. Oxidative stress and mitochondrial dysfunction are drivers of diabetic lung ischemia-reperfusion injury; however, the pathways that mediate these events are unexplored. In this study using a high-fat diet–fed model of streptozotocin-induced type 2 diabetes in rats, we determined the effect of hydrogen sulfide on lung ischemia-reperfusion injury with a focus on Sirtuin3 signaling. Methods Rats with type 2 diabetes were exposed to GYY4137, a slow release donor of hydrogen sulfide with or without administration of the Sirtuin3 short hairpin ribonucleic acid plasmid, and then subjected to a surgical model of ischemiareperfusion injury of the lung ( n  = 8). Lung function, oxidative stress, inflammation, cell apoptosis, and mitochondrial function were measured. Results Compared with nondiabetic rats, animals with type 2 diabetes at baseline exhibited significantly decreased Sirtuin3 signaling in lung tissue and increased oxidative stress, apoptosis, inflammation, and mitochondrial dysfunction ( P P Conclusion Impaired lung Sirtuin3 signaling associated with type 2 diabetic conditions was further attenuated by an ischemia-reperfusion insult. Hydrogen sulfide ameliorated reperfusion-induced oxidative stress and mitochondrial dysfunction via activation of Sirtuin3 signaling, thereby decreasing lung ischemia-reperfusion damage in rats with a model of type II diabetes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    8
    Citations
    NaN
    KQI
    []