The conical shape of DIM lipids promotes Mycobacterium tuberculosis infection of macrophages

2019 
Phthiocerol dimycocerosate (DIM) is a major virulence factor of the pathogen Mycobacterium tuberculosis (Mtb). While this lipid promotes the entry of Mtb into macrophages, which occurs via phagocytosis, its molecular mechanism of action is unknown. Here, we combined biophysical, cell biology, and modelling approaches to reveal the molecular mechanism of DIM action on macrophage membranes leading to the first step of Mtb infection. MALDI-TOF mass spectrometry showed that DIM molecules are transferred from the Mtb envelope to macrophage membranes during infection. Multi-scale molecular modeling and 31P-NMR experiments revealed that DIM adopts a conical shape in membranes and aggregate in the stalks formed between two opposing lipid bilayers. Infection of macrophages pre-treated with lipids of various shapes uncovered a general role for conical lipids in promoting phagocytosis. Taken together, these results reveal how the molecular shape of a mycobacterial lipid can modulate the biological function of macrophages.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    76
    References
    1
    Citations
    NaN
    KQI
    []