Crushing energy absorption of GFRP sandwich panels and corresponding monolithic laminates

2007 
Steady quasi-static compression of GFRP monolithic laminates and sandwich panels made of a randomly oriented continuous filament mat/polyester were undertaken. The effects of facing/laminate thickness, trigger collapse system and aspect ratio on their failure mechanisms, hence their energy absorption capability were examined. A numerical model, using a non-linear finite element explicit code, LS-DYNA, was used for pre-analysis of the effect of aspect ratio. A collapse trigger configuration was also studied numerically. The experimental data showed that high values of energy absorbed per unit mass were a predominant feature of the thickest monolithic laminates and sandwich panels with the thickest facings. The monolithic laminates showed higher specific energy than their sandwich panel counterparts. It seems that this difference was due to instability of the sandwich specimens.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    21
    Citations
    NaN
    KQI
    []