Initial applications of the molecular model to compute defect vibrations of oxygen in silicon

1989 
Abstract We have employed the molecular model introduced first by Jaswal to compute the vibrational spectra of oxygen bearing defects in a silicon crystal. This was done in the context of a silicon molecular cluster with outer valencies terminated by hydrogen. We employ the MINDO/3 semi-empirical electronic structure method to compute the total energy of the molecular cluster. We examine the conditions in applications of the molecular model required for accurate predictions of oxygen local-mode vibrational frequencies. We find that the oxygen atom and its nearest neighbor silicon atoms must be allowed to vibrate. The nearest-neighbor and next nearest-neighbor shells of silicon atoms must be allowed to relax from their lattice positions. The outermost relaxed shell of silicon atoms should be bonded to silicon atoms in their lattice positions. We apply the molecular model to three defects of crystalline silicon; interstitial oxygen, oxygen in a vacancy (the A-center), and two oxygen atoms in a vacancy. Comp...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    5
    Citations
    NaN
    KQI
    []