Computational modeling of tetrahydroimidazo‐[4,5,1‐jk][1,4]‐benzodiazepinone derivatives: An atomistic drug design approach using Kier‐Hall electrotopological state (E‐state) indices

2008 
Quantitative structure-activity relationships (QSAR), based on E-state indices have been developed for a series of tetrahydroimidazo-[4,5,1-jk]-benzodiazepinone derivatives against HIV-1 reverse transcriptase (HIV-1 RT). Statistical modeling using multiple linear regression technique in predicting the anti-HIV activity yielded a good correlation for the training set (R2 = 0.913, R = 0.897, Q2 = 0.849, MSE = 0.190, F-ratio = 59.97, PRESS = 18.05, SSE = 0.926, and p value = 0.00). Leave-one-out cross-validation also reaffirmed the predictions (R2 = 0.850, R = 0.824, Q2 = 0.849, MSE = 0.328, and PRESS = 18.05). The predictive ability of the training set was also cross-validated by a test set (R2 = 0.812, R = 0.799, Q2 = 0.765, MSE = 0.347, F-ratio = 64.69, PRESS = 7.37, SSE = 0.975, and p value = 0.00), which ascertained a satisfactory quality of fit. The results reflect the substitution pattern and suggest that the presence of a bulky and electropositive group in the five-member ring and electron withdrawing groups in the seven-member ring will have a positive impact on the antiviral activity of the derivatives. Bulky groups in the six-member ring do not show an activity-enhancing impact. Outlier analysis too reconfirms our findings. The E-state descriptors indicate their importance in quantifying the electronic characteristics of a molecule and thus can be used in chemical interpretation of electronic and steric factors affecting the biological activity of compounds. © 2008 Wiley Periodicals, Inc. J Comput Chem, 2008
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    12
    Citations
    NaN
    KQI
    []