Moderate nucleotide diversity in the Atlantic herring is associated with a low mutation rate

2017 
Evolution by natural selection favours the survival of individuals that are well suited to their environment. This process depends on genetic differences between individuals that make some more able to survive than others. These genetic differences are the result of mutations in DNA of germ-line cells, that is, the cells that produce egg cells and sperm. These mutations mean that new offspring always have a few small differences in some of the genes they inherited from each of their parents. DNA contains strings of molecules known as bases. These act as individual “letters” in the genetic code of an individual. Rapid sequencing of DNA to find out the order of these bases makes it possible to study the rate of mutations within a species. This provides a way to measure how different an individual is from its parents and, by extension, the potential of the species to diversify and adapt to different environments. There are over a trillion Atlantic herring in the Atlantic Ocean, so this fish is an ideal model to study the effects of germ-line mutations on genetic diversity. In 2016, a group of researchers reported that there is relatively little genetic diversity across Atlantic herring. Given the large population, this suggested that the mutation rate in this species may be low. Feng, Pettersson, Lamichhaney et al. – who were also involved with the earlier work – sequenced the DNA of two families of Atlantic herring raised in captivity to calculate the rate of germ-line mutations in this species. The results showed that, on average, two changes occur per one billion letters in the genetic code in each generation. That is one to two new mutations per egg cell or sperm. This is the lowest mutation rate yet recorded in any animal with a backbone and is around six times lower than the mutation rate in humans. Whilst the low mutation rate in Atlantic herring means there are few differences between individual fish, the extremely large number of these fish on the planet still means that there is enough diversity across the population to allow the species to adapt to changing conditions. This work is important for conservation as it highlights the great variation in potential genetic diversity across species. Future work will need to examine why the mutation rate in Atlantic herring is so low and compare it more widely to mutation rates in other species.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    38
    Citations
    NaN
    KQI
    []