Direct Imaging of the HD 35841 Debris Disk: A Polarized Dust Ring from Gemini Planet Imager and an Outer Halo from HST/STIS

2018 
We present new high resolution imaging of a light-scattering dust ring and halo around the young star HD 35841. Using spectroscopic and polarimetric data from the Gemini Planet Imager in H-band (1.6 microns), we detect the highly inclined (i=85 deg) ring of debris down to a projected separation of ~12 au (~0.12") for the first time. Optical imaging from HST/STIS shows a smooth dust halo extending outward from the ring to >140 au (>1.4"). We measure the ring's scattering phase function and polarization fraction over scattering angles of 22-125 deg, showing a preference for forward scattering and a polarization fraction that peaks at ~30% near the ansae. Modeling of the scattered-light disk indicates that the ring spans radii of ~60-220 au, has a vertical thickness similar to that of other resolved dust rings, and contains grains as small as 1.5 microns in diameter. These models also suggest the grains have a low porosity, are more likely to consist of carbon than astrosilicates, and contain significant water ice. The halo has a surface brightness profile consistent with that expected from grains pushed by radiation pressure from the main ring onto highly eccentric but still bound orbits. We also briefly investigate arrangements of a possible inner disk component implied by our spectral energy distribution models, and speculate about the limitations of Mie theory for doing detailed analyses of debris disk dust populations.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []