Angiocrine Wnt signaling controls liver growth and metabolic maturation in mice

2018 
Postnatal liver development is characterized by hepatocyte growth, proliferation and functional maturation. Notably, canonical Wnt signaling in hepatocytes has been identified as an important regulator of final adult liver size and metabolic liver zonation. The cellular origin of Wnt ligands responsible for homeostatic liver/body weight ratio remained unclear, which was also attributable to a lack of suitable endothelial Cre driver mice. To comprehensively analyze the effects of hepatic angiocrine Wnt signaling on liver development and metabolic functions, we used endothelial subtype-specific Stab2-Cre driver mice to delete Wls from hepatic endothelial cells (HEC). The resultant Stab2-Cretg/wt;Wlsfl/fl (Wls-HECKO) mice were viable but showed a significantly reduced liver/body weight ratio. Specifically, ablation of angiocrine Wnt signaling impaired metabolic zonation in the liver, as shown by loss of pericentral, β-catenin-dependent target genes such as Glutamine Synthase (Glul), RhBg, Axin2 and CYP2E1 as well as by extended expression of periportal genes such as Arginase 1 (Arg1). Furthermore, endothelial subtype-specific expression of a c-terminally YFP-tagged Wls fusion protein in Wls-HECKO mice (Stab2-Cretg/wt;Wlsfl/fl;Rosa26:Wls-YFPfl/wt [Wls-rescue]) restored metabolic liver zonation. Interestingly, lipid metabolism was altered in Wls-HECKO mice exhibiting significantly reduced plasma cholesterol levels, while maintaining normal plasma triglyceride and blood glucose concentrations. On the contrary, zonal expression of Endomucin, LYVE1 and other markers of HEC heterogeneity were not altered in Wls-HECKO livers. Conclusion: Angiocrine Wnt signaling controls liver growth as well as development of metabolic liver zonation in mice, while intrahepatic HEC zonation is not affected. This article is protected by copyright. All rights reserved.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    39
    Citations
    NaN
    KQI
    []