An Update of the Ground Testing of the Li-ion Batteries in Support of JPL's 2003 Mars Exploration Rover Mission

2006 
In early 2004, JPL successfully landed two Rovers, named Spirit and Opportunity, on the surface of Mars after traveling > 300 million miles over a 6-7 month period. In order to operate for extended duration (>9 months), both Rovers are equipped with rechargeable Lithium-ion batteries, which have enabled operation for over 854 and 834 Sols of operation, respectively, to date. Given that the batteries were required to support the mission for 90 Sols of operation by design, it is significant that the batteries have demonstrated over a nine fold increase in life over mission objectives. In addition to supporting the surface operations in conjunction with a triple-junction deployable solar arrays, the batteries were designed to aid in the launch and the EDL pyros, and allow for anomalies during cruise. In summary, the requirements of the Lithium-ion battery include the ability to provide power at least 90 sols on the surface of Mars, operate over a wide temperature range (-20 C to +30 C), withstand long storage periods (e.g., cruise period), operate in an inverted orientation, and support high current pulses (e.g., firing pyro events). In order to determine the viability of meeting these requirements, ground testing was performed on a Rover Battery Assembly Unit (RBAU), consisting of two 8-cell 10 Ah lithium-ion batteries connected in parallel. The RBAU upon which the performance testing was performed is nearly identical to the batteries incorporated into the two Rovers currently on Mars. The testing includes, (a) performing initial characterization tests (discharge capacity at different temperatures), (b) simulating the launch conditions, (c) simulating the cruise phase conditions (including trajectory correction maneuvers), (d) simulating the entry, decent, and landing (EDL) pulse load profile (required to support the pyros) (e) simulating the Mars surface operation mission simulation conditions, as well as, (f) assessing capacity loss and impedance characteristics as a function of temperature and life. This paper provides further detail to previously reported results1 of the RBAU testing program, especially with regard to the life characteristics. To date, the lithium-ion batteries (fabricated by Lithion/Yardney, Inc.) have been demonstrated to far exceed the requirements defined by the mission, both on Mars and on the ground, and are projected to support an extended mission (> 4 years).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    6
    Citations
    NaN
    KQI
    []