Characterization of carbon and iron nanostructures synthesized by the DC arc discharge method: influence of the location in the reactor and of the pressure
2005
X-ray diffraction, Mossbauer spectroscopy, Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) techniques were used to characterize the Fe-C phases in the soots synthesized by the DC arc discharge method. Various equilibrium and non-equilibrium Fe-C compounds were identified, with fractions depending on both the location in the reactor and the helium gas pressure. The soots obtained are composed of the same five phases (C-graphite, α-Fe, γ-Fe, Fe3C and Fe5C2) whatever the helium gas pressure and wherever they are situated in the reactor. However, the location in the reactor has a considerable influence on the size of the particles in the nanostructure. The Fe-C compounds in the Pyrex vessel samples (CL) seem only to be present in the form of nanoparticles embedded in an amorphous gangue, while the water-cooled copper cylinder samples (RS) contain, in addition to these nanoparticles, large composite crystalline particles.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
21
References
1
Citations
NaN
KQI