Ternary transition metal alloy FeCoNi nanoparticles on graphene as new catalyst for hydrogen sorption in MgH2

2019 
Abstract The present investigation deals with the synthesis of ternary transition metal alloy nanoparticles of FeCoNi and graphene templated FeCoNi (FeCoNi@GS) by one-pot reflux method and there use as a catalyst for hydrogen sorption in MgH2. It has been found that the MgH2 catalyzed by FeCoNi@GS (MgH2: FeCoNi@GS) has the onset desorption temperature of ~255 °C which is 25 °C and 100 °C lower than MgH2 catalyzed by FeCoNi (MgH2: FeCoNi) (onset desorption temperature 280 °C) and the ball-milled (B.M) MgH2 (onset desorption temperature 355 °C) respectively. Also MgH2: FeCoNi@GS shows enhanced kinetics by absorbing 6.01 wt% within just 1.65 min at 290 °C under 15 atm of hydrogen pressure. This is much-improved sorption as compared to MgH2: FeCoNi and B.M MgH2 for which hydrogen absorption is 4.41 wt% and 1.45 wt% respectively, under the similar condition of temperature, pressure and time. More importantly, the formation enthalpy of MgH2: FeCoNi@GS is 58.86 kJ/mol which is 19.26 kJ/mol lower than B.M: MgH2 (78.12 kJ/mol). Excellent cyclic stability has also been found for MgH2: FeCoNi@GS even up to 24 cycles where it shows only negligible change from 6.26 wt% to 6.24 wt%. A feasible catalytic mechanism of FeCoNi@GS on MgH2 has been put forward based on X-ray diffraction (XRD), Raman spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Photoelectron Spectroscopy (XPS), and microstructural (electron microscopic) studies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    28
    Citations
    NaN
    KQI
    []