Interfacial Nanostructures in Ceramics: a Multiscale Approach

2008 
This volume contains a selection of invited and contributed papers that were presented in Symposium J at the European Materials Research Society Spring Meeting, 28 May–1 June 2007. Electronic and mechanical properties of interfaces are sensitive to their atomic scale structures, which in turn depend on composition, temperature and indeed the history of environments of the material during its manufacture. The richness of structure and numbers of parameters involved, even for planar interfaces, present enormous challenges to the community of theory and simulation of materials, at all lengthscales from the atomic to the macroscopic. While there is a need for modelling and simulation in order to understand, predict and then design materials, this can only be achieved when researchers at each length scale learn about the strengths and limitations of each others' approaches, and how they can validate their models by exchange of information and analysis of experimental data. To this end the Symposium brought such researchers from the theoretical community together with experimentalists. A volume like this gives a snapshot of progress made, but does not fully capture the value of the Symposium in setting new ideas in motion, or helping to bury old ones. We are grateful to all participants for the lively discussions, to E-MRS for enabling the meeting, and to the European Community INCEMS Project, which has provided funding for this research activity. This volume is dedicated to Rowland Cannon, who was deeply involved in the conception and elaboration of the ideas about Interfacial Nanostructures that are at the heart of the INCEMS project, and whose unexpected death two years ago was a great loss to our community. Finally we acknowledge the support of IOP Publishing for enabling these papers to be made freely available to download from the electronic version of Journal of Physics: Conference Series. Mike Finnis, Martine Gautier-Soyer and Michael Hoffmann Editors
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []