Polarized emission in II–VI and perovskite colloidal quantum dots

2017 
The polarized emission of colloidal quantum dots from II-VI and perovskite semiconductors were investigated thoroughly, revealing information about the optical transitions in these materials and their potential use in various opto-electronic or spintronic applications. The studies included recording of the micro-photoluminescence of individual nanostructures at cryogenic temperatures, with or without the influence of an external magnetic field. The experimental conditions enabled detection of circular and/or linear polarized emission to elucidate the exciton manifolds, angular momentum of the emitting states, Lande g-factors, single exciton and bi-exciton binding energies, the excitons' effective Bohr radii, and the unique influence of the Rashba effect. The study advances the understanding of other phenomena such as electron-hole dissociation, long diffusion lengths, and spin coherence, facilitating appropriate design of optical and spin-based devices.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    168
    References
    3
    Citations
    NaN
    KQI
    []