Comparison of Corrosion Resistance and Cytocompatibility of MgO and ZrO2 Coatings on AZ31 Magnesium Alloy Formed via Plasma Electrolytic Oxidation

2018 
In this work, one coating is comprised of ZrO2 and the other consists of MgO as main phase composition was produced on AZ31 magnesium alloy using one-step plasma electrolytic oxidation (PEO). The purpose of this work was to study the corrosion resistance and cytocompatibility of the above-coated AZ31 magnesium alloys in order to provide a basis for AZ31 Mg alloy’s clinical applications of biomedical use. The morphology and phase composition of the coatings were studied using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The corrosion properties were examined using electrochemical testing, hydrogen evolution measurements, and immersion tests in a simulated body fluid (SBF). Compared with bare magnesium and the MgO coating, the ZrO2-containing coating exhibited an improved corrosion resistance. Cell proliferation assays and cell morphology observations showed that the ZrO2-containing coating was not toxic to the L-929 cells. The ZrO2 coating was much denser and more homogeneous than the MgO coating, hence the corrosion resistance of the ZrO2-coated AZ31 Mg alloy was superior and more stable than the MgO-coated AZ31 Mg alloy, and ZrO2/AZ31 did not induce a cytotoxic reaction to L-929 cells and promote cell growth.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    8
    Citations
    NaN
    KQI
    []