Positive modulation of osteogenesis on a titanium oxide surface incorporating strontium oxide: An in vitro and in vivo study

2019 
Abstract Surface chemistry and topography can determinatively affect the osseointegration of dental implants. Strontium (Sr) has a significant effect on the promotion of bone formation and inhibitation of bone resorption. The emphasis of this study lies on the evaluation of a new surface treatment that aims to improve the early osseointegration of dental implantation both in vitro and in vivo. A hydrothermal method was used to prepare an SrTiO 3 incorporation on sandblasted large-grit double acid-etched (SLA) titanium surfaces in SrCl 2 solution. The composition and morphology of the SrTiO 3 doped surface were analyzed by X-ray diffraction, X-ray photoelectron spectroscopy,and scanning electron microscopy. In addition, the external release figure of Sr was examined by inductively coupled plasma mass spectrometry. The proliferation, adhesion and differentiation of MC3T3-E1 cells on this surface were evaluated in vitro and presented a significant increase in SLA-Sr group compared with that in SLA group. An in vivo study in 24 New Zealand rabbits indicated a remarkable growth in the volume of direct bone-to-implant contact and peri-implant bone in SLA-Sr group, which were compared with SLA group after 3 and 6 weeks, and removal torque tests exhibited a higher torque removal value of SLA-Sr implants. The study gave the result that the biological effect of SLA-Sr implants was significantly superior to that of the SLA implants at the early stage of osseointegration.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    9
    Citations
    NaN
    KQI
    []