Nanoscaled Components for Improved Efficiency in a Multiplanel Photocatalytic Water-Splitting System

2014 
The goal of this program was to construct a multicell photochemical device for the direct conversion of solar energy directly to hydrogen by water splitting. We have fabricated a practical photolytic system for quantum efficient production of hydrogen. Our approach is based on the assembly of a multi-component integrated system for direct photocatalytic splitting of water for the efficient production of hydrogen. We propose to produce hydrogen as an energy source that is cost competitive with fossil fuels and without the concomitant production of greenhouse gases. The concept is quite straightforward. In order to achieve the over potential required for direct water splitting, the device is composed of multiple dye-sensitized cells directly linked in series, as illustrated in the figure below. The advantage of this concept is that each cell need contribute only a fraction of the overall potential required for water splitting, thus permitting device engineering to maximized efficiently without regard to electric potential. Progress and barriers to practical application will be described.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []