Facile synthesis and characterization of Bi13S18I2 films as a stable supercapacitor electrode material

2019 
Electrical double layer capacitors (EDLCs) featuring low-cost and solution-processable electrode materials have attracted significant research interest for their green and economical applications in energy harvesting and storage devices. Here, we demonstrate a novel synthetic route for films of an underexplored 3-D hexagonal bismuth chalcohalide, Bi13S18I2, and investigate its potential as the active electrode material in EDLC-type supercapacitors. The synthetic procedure has been optimised and comprises the lowest annealing temperature (150 °C) and the shortest processing time (1 h) currently reported. When integrated in a symmetrical EDLC with an aqueous NaClO4 electrolyte, the Bi13S18I2-based device achieves a remarkable areal capacitance of 210.68 mF cm−2 with 99.7% capacitance retention after 5000 cycles. Both the Bi13S18I2 powder and thin-film electrodes have been characterized through XRD, XPS, Raman spectroscopy, and SEM. The superior stability, low-cost, and facile synthesis of Bi13S18I2 proves its promising potential for supercapacitor applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    13
    Citations
    NaN
    KQI
    []