Structure and function of virion RNA polymerase of crAss-like phage

2020 
CrAss-like phages are a recently described family-level group of viruses that includes the most abundant virus in the human gut. Genomes of all crAss-like phages encode a large virion-packaged protein that contains a DFDxD sequence motif, which forms the catalytic site in cellular multisubunit RNA polymerases (RNAPs). Using Cellulophaga baltica crAss-like phage phi14:2 as a model system, we show that this protein is a novel DNA-dependent RNAP that is translocated into the host cell along with the phage DNA and transcribes early phage genes. We determined the crystal structure of this 2,180-residue enzyme in a self-inhibited, likely pre-virion-packaged state. This conformation is attained with the help of a Cleft-blocking domain that interacts with the active site motif and occupies the RNA-DNA hybrid binding grove. Structurally, phi14:2 RNAP is most similar to eukaryotic RNAPs involved in RNA interference, although most of phi14:2 RNAP structure (nearly 1,600 residues) maps to a new region of protein folding space. Considering the structural similarity, we propose that eukaryal RNA interference polymerases take their origin in a phage, which parallels the emergence of the mitochondrial transcription apparatus.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    2
    Citations
    NaN
    KQI
    []