NT-3 Promotes Oligodendrocyte Proliferation and Nerve Function Recovery After Spinal Cord Injury by Inhibiting Autophagy Pathway

2019 
Abstract Background Spinal cord injury (SCI) is a serious medical problem, leading to lifelong disability and increasing the health burden worldwide. Traditional treatments have limited effects on neuronal function recovery. Previous studies showed that neurotrophin-3 (NT-3) promoted oligodendrocyte survival and improved neuronal functional recovery after SCI. However, the mechanism by which NT-3 promotes oligodendrocyte survival after SCI remains unclear, which limits its application. Materials and methods A total of 75 female Sprague–Dawley rats were randomly divided into three groups: the NS group, NT-3 group, and NT-3 + rapamycin group. After successful modeling, the spinal cord specimens were taken at the corresponding time points. Western blot was used to detect autophagy-related proteins and Olig1 protein expression and combined with pathology, immunohistochemistry, flow cytometry, and other methods to detect the proliferation of oligodendrocytes after NT-3 application. Results NT-3 was found to significantly promote the recovery of motor function by Basso–Beattie–Bresnahan scores analysis in the rat SCI model. Furthermore, intraspinal administration of NT-3 could downregulate the expression of Beclin-1 in oligodendrocytes, indicating that NT-3 could inhibit excessive autophagy of oligodendrocytes after SCI. The effects of NT-3 on oligodendrocyte survival could be blocked by an autophagy activator rapamycin. Conclusions This study found that NT-3 could promote the recovery of motor function after SCI in rats. The underlying reason may be that NT-3 inhibits the expression of autophagy proteins in oligodendrocytes and promotes oligodendrocyte proliferation. This study provided evidence for the future clinical application of NT-3 in SCI patients.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    6
    Citations
    NaN
    KQI
    []