Metabolic engineering study on the direct fermentation of 2-keto-L-gulonic acid, a key intermediate of l-ascorbic acid in Pseudomonas putida IFO3738

2000 
Abstract We have achieved production of 2-keto- l -gulonic acid (2-KLGA) in recombinant Pseudomonas putida IFO3738. Firstly, the genes for sorbose dehydrogenase (SDH)/sorbosone dehydrogenase (SNDH) were introduced into P. putida . The recombinant P. putida /pBBR-SDH produced 0.7 mg/ml of 2-KLGA in a culture broth containing 5% l -sorbose. Replacement of the native SNDH promoter by the Escherichia coli tufB promoter (pBBR-SDH-tufB) improved the productivity of 2-KLGA up to 11.4 mg/ml. Secondly, the sorbitol dehydrogenase (SLDH) gene was also introduced into P. putida . The recombinant P. putida /pUCP19-3DH carrying the genes for SDH, SNDH and SLDH had the ability to produce 2-KLGA (7.5 mg/ml) in a 5% d -sorbitol broth. The productivity of 2-KLGA was improved up to 9.8 mg/ml by changing to an expression system with two plasmids, pBBR-SDH-tufB (for SDH/SNDH) and pUCP19-SLDH (for SLDH), respectively. Moreover, the replacement of the native SLDH promoter by the E. coli tufB promoter (pUCP19-SLDH-tufB) improved the 2-KLGA productivity up to 11.6 mg/ml. Optimization of cultivation conditions increased the conversion yield of 2-KLGA to 32% and that of l -idonate, a metabolite of 2-KLGA, to 40%. These results indicate P. putida IFO3738 is one of the candidate strains for direct fermentation of 2-KLGA.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    6
    Citations
    NaN
    KQI
    []