Topological insulator-metal transition and molecular electronics device based on zigzag phagraphene nanoribbon

2018 
In this work, we investigate the electronic transport properties of a graphene allotrope composed of 5–6-7 carbon aromatic rings called phagraphene and compare with the results of the transition-voltage spectroscopy (TVS) and propose the behavior at low voltage characteristic of a topological insulator. Phagraphene properties were compared to those of graphene in a zigzag nanoribbon configuration, zigzag graphene vs zigzag phagraphene nanoribbon (zzGNR and zzPGNR). The molecular geometry and the electronic properties were calculated by density functional theory (DFT) without spin, and the electronic transport and TVS were obtained by means of DFT combined with non-equilibrium Green´s function when we couple the optimized geometry of zzGNR and zzPGNR to the leads (left and right), forming the molecular junction that will be subjected to the action of an external bias voltage (Ve) to generate the molecular device. The results exhibit (i) a metal-insulator transition when Ve is increased until Ve = 1.4 V whi...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    78
    References
    13
    Citations
    NaN
    KQI
    []