Performance of the Finite Difference Method Using Cache and Shared Memory for Massively Parallel Systems

2013 
Many algorithms have been introduced to improve performance by using massively parallel systems, which consist of several hundreds of processors. A typical example is a GPU system of many processors which uses shared memory. In the case of image filtering algorithms, which make references to neighboring points, the shared memory helps improve performance by frequently accessing adjacent pixels. However, using shared memory requires rewriting the existing codes and consequently results in complexity of the codes. Recent GPU systems support both L1 and L2 cache along with shared memory. Since the L1 cache memory is located in the same area as the shared memory, the improvement of performance is predictable by using the cache memory. In this paper, the performance of cache and shared memory were compared. In conclusion, the performance of cache-based algorithm is very similar to the one of shared memory. The complexity of the code appearing in a shared memory system, however, is resolved with the cache-based algorithm.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    7
    References
    1
    Citations
    NaN
    KQI
    []