Temperature dependent study of Fin-FET drain current through optimization of controlling gate parameters and dielectric material

2017 
Abstract Various limitations, such as gate leakage through hot carrier tunnelling, parasitic resistance and capacitance, Drain Induced Barrier Lowering (DIBL), subthreshold slope (SS), and threshold voltage roll-off are present due to size reduction. Improvements in transistor speed and performance while, reducing the device dimensions is possible using the concept of Multiple-gate Field Effect phenomenon. Temperature dependency in thin fin transistor has been systematically studied with respect to the dependence on the fin width, fin height, and gate length. In this paper the performance of miniaturized Fin-FET structure is optimized. Also, temperature (300K, 400K and 500K) dependent performances on DIBL, SS and threshold voltage are observed and optimized.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    8
    Citations
    NaN
    KQI
    []