The Tip Clearance Cavitation Mechanism of a High-Speed Centrifugal Pump with a Splitter-Bladed Inducer

2021 
For a high-speed centrifugal pump, cavitation occurs easily. To equip a high-performance splitter-bladed inducer upstream of the pump is an effective method to suppress cavitation. In this paper, an external characteristics experiment of the high-speed centrifugal pump with a splitter-bladed inducer is carried out, and the corresponding numerical calculations are completed. The research shows that the results of the numerical calculation are credible. Numerical cavitation calculations under eight different tip clearance conditions are carried out. First, it is found that the tip clearance (TC) has a certain impact on the head of the centrifugal pump. When TC is in a small range, the clearance leakage is small, and the impact on the head of the pump is not so obvious, which can give the pump a higher performance. Second, it is found that TC has a certain influence on the static pressure distribution in the cascade passage of the splitter-bladed inducer. When TC is in a certain range, the increasement in TC will aggravate the cavitation at the suction surface of the long blades near the inlet. When it exceeds the certain range, it will cause cavitation at the outlet of the inducer. At last, it is found that the cavitation’s severity and position of the inducer are closely related to TC. TC affects the magnitude and position of vorticity in the inducer’s passage. In this paper the flow mechanism of TC is revealed, and its research results can provide theoretical basis and technical support for the design of the tip clearance of the inducers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    0
    Citations
    NaN
    KQI
    []