Effects of Input Speed on the Dynamic Response of Planar Multi-body Systems with Differently Located Frictionless Revolute Clearance Joints

2012 
This paper numerically investigates the effects of clearance size of differently located revolute clearance joints without friction on the overall dynamic characteristics of a multi-body system. A typical planar slider-crank mechanism is used as a demonstration case in which the effects of clearance size of a revolute clearance joint between the crank and connecting rod (c-cr), and between the connecting rod and slider (s-cr) are separately investigated with comprehensive observations numerically presented. It is observed that, different joints in a multi-body system have different sensitivities to the clearance size. Therefore the dynamic behavior of one clearance revolute joint cannot be used as a general case for a mechanical system. Also the location of the clearance revolute joint and the clearance size play a crucial role in predicting accurately the dynamic responses of the system. Keywords: Chaotic behavior, Contact-impact force, Dynamic response, Multi-body mechanical system, Periodic behavior, Poincare Map, Quasi-periodic behavior, revolute clearance joint.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    9
    Citations
    NaN
    KQI
    []