Thermal energy harvesting using pyroelectric-electrochemical coupling in ferroelectric materials.

2020 
Recently, the coupling of ferroelectrics with electrochemical reactions has attracted increasing interest for harvesting waste heat. The change of polarisation of a ferroelectric with temperature can be used to influence chemical reactions, especially when the material is cycled near its Curie temperature. In this perspective, we introduce the principle of pyroelectric controlled electrochemical processes by harvesting waste heat energy and explore their potential electrochemical applications, such as water treatment, air purificiation and hydrogen generation. As an emerging approach for driving electrochemical reactions, the presence of thermal fluctuations and/or transient waste heat in the environment has the potential to be the primary thermal input for driving the change in polarisation of a pyroelectric to release charge for such reactions. There are a number of avenues to explore and we summarize strategies for forming multi-functional or hybrid materials and future directions such as selecting pyroelectrics with low Curie temperature (< 100 {\deg}C), improved heat conductivity, enhanced surface area or porosity, tailored microstructures and systems capable of operating over a broader temperature range.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    0
    Citations
    NaN
    KQI
    []