Impacts of riverine sand mining on freshwater ecosystems: A review of the scientific evidence and guidance for future research

2020 
Sand mining (used here as a generic term that includes mining of any riverine aggregates regardless of particle size) is a global activity that is receiving increasing media attention due to perceived negative environmental and social impacts. As calls grow for stronger regulation of mining, there is a need to understand the scientific evidence to support effective management. This paper summarizes the results of a structured literature review addressing the question, “What evidence is there of impacts of sand mining on ecosystem structure, process, and biodiversity in rivers, floodplains, and estuaries?” The review found that most investigations have focused on temperate rivers where sand mining occurred historically but has now ceased. Channel incision was the most common physical impact identified; other physical responses, including habitat disturbance, alteration of riparian zones, and changes to downstream sediment transport, were highly variable and dependant on river characteristics. Ecosystem attributes affected included macroinvertebrate drift, fish movements, species abundance and community structures, and food web dynamics. Studies often inferred impacts on populations, but supporting data were scarce. Limited evidence suggests that rivers can sustain extraction if volumes are within the natural sediment load variability. Significantly, the countries and rivers for which there is science‐based evidence related to sand mining are not those where extensive sand mining is currently reported. The lack of scientific and systematic studies of sand mining in these countries prevents accurate quantification of mined volumes or the type, extent, and magnitude of any impacts. Additional research into how sand mining is affecting ecosystem services, impacting biodiversity and particularly threatened species, and how mining impacts interact with other activities or threats is urgently required.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    28
    Citations
    NaN
    KQI
    []