On the Accuracy of Overturn-Based Estimates of Turbulent Dissipation at Rough Topography
2017
AbstractEvidence in support of overturn-based methods, often used to infer turbulent dissipation rate from density profiles, is typically from regions with weaker turbulence than that at rough-topography hotspots. The present work uses direct numerical simulations (DNS) of an idealized problem of sloping topography as well as high-resolution large-eddy simulation (LES) of turbulent flow at more realistic topography in order to investigate the accuracy of overturn-based methods in sites with internal wave breaking. Two methods are assessed: Thorpe sorting, where the overturn length LT is based on local distortion of measured density from the background, and inversion sorting, where the inversion length scale LI measures the statically unstable local region. The overturn boundaries are different between the two methods. Thorpe sorting leads to an order of magnitude overestimate of the turbulent dissipation in the DNS during large convective overturn events when inversion sorting is more accurate. The LES of...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
40
References
8
Citations
NaN
KQI