Ultrafast assembly and healing of nanomaterial networks on polymer substrates for flexible hybrid electronics

2021 
Abstract High throughput manufacturing of regenerable nanomaterial-based flexible electronics represents an extreme challenge. Here we demonstrate a rapid and eco-friendly assembly and regeneration of nanomaterial networks (films) on a hydrophobic polymer substrate (i.e., polydimethylsiloxane) from a sonicated dispersion of hydrophobic nanoparticles in water. The self-limiting sono dip coating (SDC) assembly is characterized by an ultrafast withdrawal speed (16 m/min, one to five orders of magnitude greater than that of existing nanomaterial dip-coating processes) and insensitivity to substrate geometry. It is applicable to a wide range of hydrophobic nanomaterials, from graphene to carbon nanotubes and poly (methyl methacrylate) nanoparticles. The sono healing method requires only 1 min sonication in water to regenerate graphene/polydimethylsiloxane strain sensors. Furthermore, the SDC can be combined with other nanomaterial deposition methods (e.g., electroplating) to build heterostructures and integrated devices.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    2
    Citations
    NaN
    KQI
    []