Applying a radiomics-based strategy to preoperatively predict lymph node metastasis in the resectable pancreatic ductal adenocarcinoma.

2020 
PURPOSE This retrospective study is designed to develop a Radiomics-based strategy for preoperatively predicting lymph node (LN) status in the resectable pancreatic ductal adenocarcinoma (PDAC) patients. METHODS Eighty-five patients with histopathological confirmed PDAC are included, of which 35 are LN metastasis positive and 50 are LN metastasis negative. Initially, 1,124 radiomics features are computed from CT images of each patient. After a series of feature selection, a Radiomics logistic regression (LOG) model is developed. Subsequently, the predictive efficiency of the model is validated using a leave-one-out cross-validation method. The model performance is evaluated on discrimination and compared with the conventional CT evaluation method based on subjective CT image features. RESULTS Radiomics LOG model is developed based on eight most related radiomics features. Remarkable differences are demonstrated between patients with LN metastasis positive and LN metastasis negative in Radiomics LOG scores namely, 0.535±1.307 (mean±standard deviation) vs. -1.514±1.800 (mean±standard deviation) with p <  0.001. Radiomics LOG model shows significantly higher predictive efficiency compared to the conventional evaluation method of LN status in which areas under ROC curves are AUC = 0.841 with 95% confidence interval (CI: 0.758∼0.925) vs. AUC = 0.682 with (95% CI: 0.566∼0.798). Leave-one-out cross validation indicates that the Radiomics LOG model correctly classifies 70.3% cases, while the conventional CT evaluation method only correctly classifies 57.0% cases. CONCLUSION A radiomics-based strategy provides an individualized LN status evaluation in PDAC patients, which may help clinicians implement an optimal personalized patient treatment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    1
    Citations
    NaN
    KQI
    []