Influence of deviations in manufacturing of electrothermal propulsion system on nanosatellite maneuvering accuracy

2021 
A method is proposed for assessing the results of adjustment maneuvers for a nanosatellite (NS) with an electrothermal propulsion system (ETPS). Using the example of the SamSat-M nanosatellite under development, common causes of maneuvering errors associated with deviations in the manufacturing of the propulsion system are revealed. Probabalistic analysis of the NS maneuvering process was carried out. The design parameters of the ETPS are considered as random factors. Statistical models of the distributions of all random factors are assumed to be equally probable, which is the worst-case scenario, since the true distributions of the design parameters of the ETPS are unknown. The methodological basis of the study is the method of statistical modeling (Monte Carlo method) followed by the use of regression and factor analysis, on the basis of which the influence of the scatter of each of the design parameters on the controlled parameters is determined. Requirements for the design parameters of the ETPS that affect the spread of the projections of the velocity growth vector of the NS and the arising angular motion have been formulated. The presented results can be used to assess the influence of production deviations in the design parameters of propulsion systems on the nature of spacecraft motion, as well as to state requirements for the spread of design parameters to ensure the achievement of the objective.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []