Mandrel-based patterning: density multiplication techniques for 15nm nodes
2011
In many ways, sidewall spacer double patterning has created a new paradigm for lithographic roadmaps. Instead of
using lithography as the principal process for generating device features, the role of lithography becomes to generate a
mandrel (a pre-pattern) off-of-which one will subsequently replicate patterns with various degrees of density
multiplication. Under this new paradigm, the innovativeness of various density multiplication techniques is as critical to
the scaling roadmap as the exposure tools themselves.
Sidewall spacer double patterning was the first incarnation of mandrel based patterning; adopted quickly in NAND flash
where layouts were simple and design space was focused. But today, the use of advanced automated decomposition
tools are showing spacer based patterning solutions for very complex logic designs. Future incarnations can involve the
use of laminated spacers to create quadruple patterning or by retaining the original mandrel as a method to obtain triple
patterning. Directed self-assembly is yet another emerging embodiment of mandrel based patterning, where selfseparating
polymers are registered and guided by the physical constraint of a mandrel or by chemical pre-pattern trails
formed onto the substrate.
In this summary of several bodies of work, we will review several wafer level demonstrations, all of which use various
forms of mandrel or stencil based density multiplication including sidewall spacer based double, triple and quadruple
patterning techniques for lines, SADP for via multiplication, and some directed self-assembly results all capable of
addressing 15nm technology node requirements and below. To address concerns surrounding spacer double patterning
design restrictions, we show collaboration results with an EDA partner to demonstrate SADP capability for BEOL
routing layers. To show the ultimate realization of SADP, we partner with IMEC on multiple demonstrations of
EUV+SADP.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
3
References
14
Citations
NaN
KQI