A human platelet angiotensin I-processing system. Identification of components and inhibition of angiotensin-converting enzyme by product.

1985 
Abstract Mechanisms controlling the local generation of angiotensin II by vascular tissue are incompletely understood. Human platelets were examined for their ability to metabolize angiotensin I. Platelet-dependent angiotensin I metabolism was detected by a high performance liquid chromatography assay which allowed quantitation of angiotensin I substrate utilized and products formed. The major product of platelet-dependent angiotensin I metabolism was identified as des-Leu10-angiotensin I. The platelet des-Leu10-angiotensin I-generating activity had a pH optimum of 6.0-6.5 and was inhibited 100% by mersalyl acid (10(-4) M), 86% by leupeptin (10(-4) M), and 95% by iodoacetamide (10(-2) M). The activity had an approximate Mr = 70,000 as determined by Sephacryl S-200 gel filtration. Intact human platelets stimulated with calcium ionophore (1-10 microM) released 13.7-30.8% of the des-Leu10-angiotensin I-generating activity. Des-Leu10-angiotensin I, the major product of platelet angiotensin I metabolism, inhibited human serum and purified rabbit lung angiotensin-converting enzymes with an I50 of 3.7 X 10(-6) and 2.0 X 10(-6) M, respectively. These results suggest that the platelet may control local angiotensin II formation at vascular sites both by metabolism of the precursor peptide angiotensin I and by generation of an endogenous angiotensin-converting enzyme inhibitor, des-Leu10-angiotensin I. This platelet-dependent pathway may contribute to the control of local levels of vasoactive peptides, such as bradykinin and angiotensin II, so as to alter local tissue blood flow.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    32
    Citations
    NaN
    KQI
    []